Large-scale virtual screening on public cloud resources with Apache Spark
نویسندگان
چکیده
منابع مشابه
Large-scale virtual screening on public cloud resources with Apache Spark
BACKGROUND Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure ra...
متن کاملEfficient iterative virtual screening with Apache Spark and conformal prediction
BACKGROUND Docking and scoring large libraries of ligands against target proteins forms the basis of structure-based virtual screening. The problem is trivially parallelizable, and calculations are generally carried out on computer clusters or on large workstations in a brute force manner, by docking and scoring all available ligands. CONTRIBUTION In this study we propose a strategy that is b...
متن کاملTowards Large Scale Environmental Data Processing with Apache Spark
Currently available environmental datasets are either manually constructed by professionals or automatically generated from the observations provided by sensing devices. Usually, the former are modelled and recorded with traditional general-purpose relational technologies, whereas the latter require more specific scientific array formats and tools. Declarative data processing technologies are a...
متن کاملVirtual screening on large scale grids
Large scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cheminformatics
سال: 2017
ISSN: 1758-2946
DOI: 10.1186/s13321-017-0204-4